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1. Introduction

The directional couplers are inherently assumed as four-port devices, which consisted of
two transmission lines that are electromagnetically coupled to each other. The first port is
named as input, and the second one as output or transmitted, the third one as sampling or
coupled and the fourth one as isolated or terminated. By using a special design the input
power is divided between output and coupled port in a certain ratio named coupling factor.
The required value for coupling factor P,/P; defines the range of applications for directional
couplers. Based on the application, coupling factor could be any value like 3, 6, 10, 20 dB
and even more. The performance of the directional coupler is usually evaluated by its direc-
tivity between port 3 and 4.The directivity is a calculated parameter from isolation and cou-
pling factor and shows how the two components of wave cancel each other at port 4.
Though we prefer to have high value for directivity as much as possible, but in real situation
this could be happened only around center frequency of designing band. The waveguide di-
rectional couplers have a good directivity compared to microstrip or stripline couplers and
in spite of their bulky size, give us a low loss, high power handling, good characteristics and
low cost due to use of just a simple waveguide.

Nowadays the numerical methods are widely used for simulation and optimization of high
frequency structures. Some of them such as HESS and FEKO, are well commercialized and
used widely by researchers and engineers.. But for designing procedure and for starting
point we need an initialization value to input into simulator and then optimize the parame-
ters by its internal routines.

In this chapter we focus on the waveguide directional couplers and we try to give a good
reference as well as finalized designing formulas in closed form and tables to be used indi-
vidually or as initial values for numerical software. The full generalized field theory and its
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equations for designing based on multi-hole coupling structure will be introduced, though
more detailed basic information could be found in given references.

Moreover, by solving the equations, the recursive procedure is employed in a computer pro-
gram to adjust the required directivity, coupling and frequency or waveguide type to speci-
fy the number of coupling holes, individual diameters and locations of holes in waveguide’s
coordinate. Besides of those parameters, the length of coupler, matched load and other sizes
of structure for fabricating, will be defined too. By using the different methods like bino-
mial, Chebyshev, and super imposed to calculate the coupling of each hole, the wide band-
width response is achieved. At the end, a number of books and papers are given as good
references for further study.

Port3

COUPLED

Port4

TERMINATED

Port1

INPUT

Figure 1. An Ordinary Broad-Wall Waveguide Directional Coupler and its ports

1.1. Definitions

As mentioned, couplers are considered as 4-port passive devices in which, a part of input
wave reaches to output port 2 and the remained would be coupled to the coupled port 3.
Port 4 usually internally is matched to damp the residual internally reflected waves from
port 2 and port 3. Ideally there is no wave reach port 4. Port 4 usually is terminated by a full
band load as shown in Figurel and Figure2.

In waveguide couplers, the coupling method is done by putting a waveguide on top of anoth-
er one and by making some aperture holes in their common wall a determined portion of wave
would be leaked into the other waveguide. Though the waveguides axis and coupling aper-
tures can be chosen arbitrary [2, 3], but for adequate specific usage and for easy derivation of
design equations, we consider that two waveguide’s are lay exactly on each other. Here the
broad-wall coupling configuration is more interested and concentrated. Though, for side-wall
the derivation of the design equations are so simple but the bandwidth is limited in spite of
higher power handling.
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Figure 2. An equivalent 4-Port configuration for a directional coupler

Since 1945, extensive studies have been conducted on the issue and many researchers have
tried to optimize the designing equations to make the result more accurate. For instance, dif-
ferent slot shapes had been introduced to increase the bandwidth and modifying the specifi-
cations. [12, 25, 27]

In order to start the calculations, there are three major parameters that we need to define for
each coupler:

* Coupling factor “C” in dB, that represents the power received by port 3 as:
P P
C=10log ﬁ or C=-10log &+ 0

The coupling factor shows the ratio of power at port 3 to input power at port 1. Typically
we prefer to have one of the 3, 6, 10, 20 or 30 dB as standard values but for specific appli-
cation it also can be defined freely.

* Directivity “D”, is the ratio of output power at port 3 to received power at port 4. Since
we prefer to eliminate the power at port 4, therefore the high values for “D” is more inter-
ested. The ”D” in terms of dB is defined as:

P P
D=10log T{ or D=-10log % ()

* Bandwidth “BW”, which depends on directivity. By increasing the number of coupling
apertures, the order of coupler increases ( similar to the order of filter) hence the directivi-
ty is increased. Meanwhile, higher bandwidth is also achieved. Therefore, by choosing the
required minimum directivity, D ., the available bandwidth is calculated.

For a 10 dB coupling or having a 0.1 of input power to port 3, we would have:

P
10log 7-=10 — P,=75P, 3)

1
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In the same way, for a 3dB coupling, half of input power will receive to port 3:
P 1
1010g ﬁ=3 — szfpi 4)
And if we consider D = 40 dB for directivity:
P
10log 5-=40 — P;=10000P, (5)

It is the adequate value for designing a good directional coupler.

A number of references, which have studied the couplers and have given the relationship
between number of aperture holes “n” and directivity “D” are listed in references [12, 25,
23]. In addition to number of aperture holes”n”, in the designing procedure for directional
couplers, certain parameters should be well defined as:

* Distances between the holes
* Distances between holes to side-wall (holes center offset from waveguide axis)
* The holes dimensions (diameter of holes for circular holes).

It has been shown that to have an optimum coupling around a certain frequency, the criteria
(6) should be kept in which “x” is the distance between the holes centers to the side-wall and
“a” is the broad wall size of waveguide: [24]

2025 (6)

Furthermore, by precise study, the best design value for ratio of (6) is given as [23]
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Figure 3. Cross section of the directional coupler and coupling holes

The distances between holes should be about )\g/4 however a question remains, what is the

proper value of Ag when the bandwidth is limited to the /\gl to )\gZinterval? To answer the

question, there are three definitions used for /\g:
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1. A, is the average of wavelength of lower band A, and upper band A, so:

_ Agl +/\g2 /\X _ 1
A= - T_g()\gl + Agz) ®)

2. A, canbe considered as geometric mean between A, and A, :

A1
/\g=,//\gl./\g2—» T=T A1 A €))

3. /\g can be considered as mean value between Agl and AQZ:

i 2/\81/\32 /‘2 /\s'IAXZ (10)

1 1
L S
Ay Ay Ay 8§ Mgty 4T )

2

The best choice for defining the centers of two holes is the 3 definition since it has been
practically approved too [23]. So the wavelength would be derived from (10). Therefore, in
order to define the dimensions of each hole (or diameter in case of circular hole type), the
each hole’s coupling should be calculated first, and the hole’s diameter would be derived
consequently.

1.2. Fields Equations

In order to calculate the coupling of each hole and by using the required D,;, that we need-

here, the number of holes “n” will be derived in two different ways:
i- The coupling coefficient mapped to coefficients of n™ order of Chebyshev polynomial.

ii- The coupling coefficient mapped to coefficients of n order of Binomial polynomial.

“zr

By assuming the same order for polynomials “i” and and by noticing that the directivity
slope in case of “i” is higher, we expect to have higher bandwidth in comparizon to “ii” and
limited ripple in pass-band. In case of “ii” though there is no ripple in pass-band but the
slope of directivity is lower than “i” with same order of polynomial, therefore the band-
width is lower than “i”. For years many of manufacturers chose the “i” method and consid-
ering the number of holes n = 20. Here, the “i” method is chosen, however the number of

"

holes “n” would be defined from D, ;, and it will be not fixed anymore.

“ir

In fabricating the couplers, any arbitrary shape for holes can be used but the circular; elliptic
and rounded-edge rectangle has been widely studied, simulated and used in research reports.
[30] Here, the circular holes have been adopted. The circular holes can be aligned in one, two or
three parallel rows, but in our case, 2-rows are used. In order to calculate the coupling coeffi-
cients and related field equations the “Bethe’s small-hole coupling theory” is used as the main
computational method. Further, by using a correcting function, the theory is expanded to use
big-size holes as well [12, 26, 27]. In that way, Levi’s work would be followed to find the effect
of wall-thickness “t” and also the relationship between variations of directivity “D” and cou-
pling error “AC”.[27]. Levi showed thatif “D” increases, “AC” will decrease.
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In special case, if we require high directivity “D”, like “D =50 dB” for small bandwidth like
8.9 to 9 GHz, only 2 holes are needed to synthesis the coupler.

A
For calculating the distance of holes’ centers to side-wall “x”, the equation sin na—x = Téo is used
a

in which “a” is broad-side of waveguide and A is the wavelength in the middle of the band. [2]

The coupled wave equations for incident wave A; and reflected B;by assuming the same

amplitude for waves are as follows:

A= M HH M R - pE Ve an
.27
By- M OH 2+ MO - PEVE D) )

In which, “a” and “b” are the waveguide dimensions, M, and M are the magnetic polariza-

“u

tion components in “x” and “z” axis and P is electrical polarization. The H x(l) is the ampli-

tude’s wave component in the first waveguide and H ;2)15 for second and so on. If two
@

y and H Z(l)=H 22). Then the fields’ components are ex-

waveguides are identical then H ,51) =H

pressed as:

H_ =-Sin"—e¢/* (13)
Ay ,

H,=j5Cos e 1? (14)

Ag oo X iy 15

E =7 Sin—e” (15)

The field equations are given separately for “Narrow wall” and “Broad wall” cases. Here,

we briefly introduce them and give the relations for our interested one (i.e., Broad wall):
1.2.1. Narrow wall
By referring to Figure 5, since x =0, the equations could be simplified as:

jAM,
2a3b

(16)

In which, M, is independent from frequency. In other words, “Narrow wall” coupling has

significant difference comparing to “Broad wall” coupling.
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Figure 4. The geometry of field equations and waveguide

Figure 5. Narrow wall coupling

1.2.2. Broad wall

This case is shown in Fig.6 and equations are expressed as following:

A= {2 plsin? 7 e (2 Poos? ] 17)

Bﬁ;szZHM + (%)Z.P}Sin2 na—x -MZ(A—S)ZCOS2 E] (18)
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Figure 6. Broad-wall coupling

If the holes are circular with a diameter “d” the parameters “P, M, and M, ”

culated as:

By putting (19 & 20) in (17 &18) we will have simplified form:

_jnd 3 [ 2a Ay adg :|

1= 1247 LA, T 20 " 12

jnd 3|: 2a A, ad }

(TN W T

1 1 .
= We will have:

. 1
And if we put 5= X

A, = jnd3|:2_a+&i|
17 2402 L A, 2a
B[ & ]
17 2402 Ay T 2a

By putting A, =24 then minimum value for A, is calculated as:

’

are cal-

19)

(20)

@0

(22)

(23)

(24)
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jnd 3
A10=120% (25)

And coupling variation to frequency changing is:

2 A
T
AC=20log [ L ] (26)

On the other hand, variation of directivity to frequency is given by:

A
D =2010g]?1 =20log %,

2 A
FRaT
G‘Z } (27)

AX'Zn

The solved equations for R100 waveguide is given in Fig.7

D
10 —
5 Band for 1"x %"
waveguide
075 1602 AC
1 | \ > 2a
0.6 0.8 1.8 Ay
5 -

Figure 7. Theoretical coupling variation and directivity for transverse arrangements of 1, 2 or 3 holes in common
broad-wall of R100 waveguide.[14]

When a number of single holes are aligned in a row, the array’s directivity will be added to

basic value of directivity.

As it has been shown earlier, the Broad-wall couplers have better characteristics in wide fre-
quency spans comparing to Narrow-wall couplers while the power handling characteristic

of Narrow-wall couplers are better.
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1.3. Coupling by big holes

The equations given in section 1.3 were valid for small holes. By considering the wall-thick-

“ t"

ness and big hole’s by surface size of “A”, the equations should be corrected. This has

already done and the results will be used now. [15]

1.3.1. Corrections for wall thickness “t”

When the coupling holes have thickness “t”, it equals to a short-length circular waveguide,
which is working under its cut-off frequency (when frequency is lower than resonance fre-
quency). Therefore the amplitude of the coupled wave attenuates by following term:

RESTINERC T @9

In which, the A_ is the cut-off wavelength of hole and A is the wavelength in operating fre-

”t ”

quency, is the wall-thickness and “A” is the correction factor which includes the interac-
tions of adjacent fields and is defined practically. [15] For elliptic holes (Narrow slot) the
“A” factor is in 3" order but for circular holes it is close to first order. If the fields have multi
components, correction factor (28) should be applied on all of the Bethe’s equations. It
means that in equations (17) and (18) the magnetic field correction factor for coupling have a
parameter A_ that is due to excitation by TE;; mode so for this mode A.— A;;=1.705d and
correction factor for electric field coupling uses a A, which relates to TM ; mode and equals

to A, — A, =1.305d.

1.3.2. Corrections for big size holes

A good study for such big size holes have been done by an equivalent circuit. [15] In this
way, the hole’s effect will be simulated by a two port network in parallel or in series be-
tween two waveguides which have mutual coupling. This network is a lossless and should
be defined by Foster’s reactance theorem. Here, the impedance will be defined by locations
of its zeroes and poles in addition to the multiplications coefficients.

In simple expression of Bethe’s small sized coupling hole theory, this impedance has a sim-
ple form. For example the reactance of a small hole in a thin diaphragm at the cross section
of a rectangular waveguide, working in TE, is:

ArM Z,,

ToabA,

(29)

In which, the “a” and “b” are the waveguide dimensions that have been shown in Fig.4
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The term A, is the guided wavelength, “M” magnetic polarization, Z, characteristic impe-

A
dance of the waveguide. The Z, has a direct relation to term Tg, which shows that lumped

reactance “X” has a direct relation to frequency (X o< f) too.

Therefore the small hole coupling theory assumes that the “X” would be a constant reac-
tance but it is not true. Because, there are a few numbers of unwanted resonances occurred
in the frequency band. For this reason the (29) would be a good definition when the operat-
ing frequency is somehow lower than the first resonance. For considering the resonance ef-
fect in equation (29), the corrected “M” would be expressed by introducing a new term that

considers the effect of cut-off wavelength —(M—ZI and the result is as follows:
N

X 4nM

2 ahAxil - ‘;—i“ (30)

From measurements, it has been shown that the above correction factor gives a good ap-
proximation.

The attenuation definition (28) can be combined to (30) to give us a general correction factor
for big size holes:

@D

1.4. Multi holes coupling

A
A longitudinal coupling consists of a series of holes by center distance of - that has a great

coupling in forward and weak coupling in backward direction.

The slight coupling for a single hole has been studied and the directivity introduced by:
. .. Al
Directivity (dB)=20log 5- (32)

In which: [15]

L
A rLJ./z(p(‘)dx
E =Tn )

I doexp (-2 jpx)dx

-L 2

(33)

In the Fig.8 a series of “n” holes in one row is shown. The coupling voltage of the series is
named a,, a,,...,a,.
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g ke D —ple D | @

Figure 8. The cross section of n-Hole array and coupling coefficients

All the hole’s center distances and electrical length are the same and are considered in the
middle of the band. If the input wave to port 1 has constant amplitude and matched to other

3 ports, the reflected wave can be expressed by:
B,=a, + ;Exp(-2 j) + ayExp(-4 jp) + ... +a,Exp(-2(n - 1) jo) (34)

The interesting and useful case is when the coefficients of the series being symmetrical from

center. Therefore:
o=a, H=a, ag =0, g+ (35)
So by putting the values (35) into (34):

[2a,cos (1 - 1)¢p + 2a,c0s (1 - 2) + ... +2a, ,c0s e 1006 11 even

B- e, o 66)
[Zalcos (n-1)¢ +2a,c08 (n-2)p + ... + T]e jin-De n odd
The direct coupled wave at port 3 will be:
A=Y" a el Do (37)

And the directivity “D” is calculated by normalizing B, to A, in (36) by dividing the sum of

each coupling voltages. In special case if there are “n” identical holes, therefore:

B, sin n¢
A_1 = Tsin [0} (38)
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2. Design methods based on arrays

2.1. Chebyshev Array

If the minimum voltage over the full bandwidth to reach a good directivity “D” is needed,
the Chebyshev polynomial can be used for distribution function of each hole’s voltage. Such
coefficients are derived by putting the B, in (36) by considering the following equal ripple’s

directivity function as following;:

By=a,T,,(=2) (39)

m cos ¢y
In which the a,, is the maximum of B; over the coupling bandwidth that given by following:
Po<P =T - ¢y (40)

The a,, is calculated by putting the ¢ =0 in (39):

n

L4 14
P S (1)
an]( os ¢ ) Tn](Too)
In (36) if we put ¢ =0:
B=%a (42)
Therefore the minimum directivity over the bandwidth would be:
- (=)
Dmin _ZOIOg |:Tn—1 cos ¢ :| (43)

Comparing this method to method of Binomial polynomial is very informative that has been
done by Levi. In this case we should have: [16]

cos ¢ \n-1
Blzam'( cos ¢0) (44)
In which:
Lo 1Al
a = y{l P llrzl (45)

cos ¢y cos ¢y
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The minimum directivity at the edge of the band for this case is:

D, =20log [(ﬁ)l] (46)

Obviously the (46) always is significantly lower than the value for Chebyshev case (43).

The coupling equation for Chebyshev case is derived by putting the identical coefficients of
cos ¢ in (36). Young gave such coefficients for 3<n <8 [3]. But here, the generalized case is
obtained by a computer program for 1<n<25.

For coupling C=0 these coefficients are changed into Pascal’s triangle that for C =0 the infin-
ite directivity over a zero bandwidth obtained.

The hole’s size is derived by coupling of each hole in dB. That relation for r ™ hole
is as follows:

La,
C,=20log |

,

(47)

Since i C,=1, all the theoretically given hole couplings, transferred all power by assum-
r=1

ing the 0dB in the formula. Therefore in order to design a “C dB” coupler the “C” is
added to C , in (47). The entire hole sizes by this way and by given theory for small
size holes (or if we need by using the correction coefficient curves given by referen-
ces) can be computed. [17, 18]

In addition to both mentioned series for calculating the coefficients (Chebyshev and Bi-
nomial), there is another method that actually derived from them. It is named “Super
Imposed Arrays”.

2.2. Super Imposed Array

When the strong coupling is needed, i.e. 3dB or 6dB, it is not possible to use the one row of
holes (single array), since diameter of holes will be increased. Therefore it is more conven-
ient to have approximately same diameter for all to get good coupling quality. For this case
the super imposed array is used. As first step, we need the coefficient series in which the
holes get bigger. It would be happened when n>4. For starting we can use Chebyshev or
binomial coefficient series in one line. Then the same series should be written in second line
but in shifted position. It means, first coefficient of line 2 in under the 4™ coefficient of line 1
and so on. By adding the two lines we would have a new series that its coefficients (or holes’
diameters) alternately are the same. For example by a 6-element binomial series, we can
make a 9-element super imposed series:

As it has shown, the elements in new series are alternately identical. This can be done by
any other number of elements or polynomials. If we wanted to add more number of
holesTable 1, the same way is chosen:
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Table 2. Added more number of elements to table 1.

For special characteristics of Chebyshev series, hereinafter, it will be used as basic polyno-

mial for further design. In super imposed method the number of elements can be any value

and we would have longer coupler. If we chose other two methods the the holes diameter

get bigger and bigger and it may exceeds the broad-wall size of waveguide. By considering

the i C,=1it is cleared that each C ;must be less than 1 and in super imposed this would be
r=1

happened.

For strong couplings and the holes with the same shape the following relation is proposed
by Cohn: [14]

A, =sin (2= ) (48)

In (48) the m,,;; is the number of series for obtaining the 3 dB coupling. For example, if a 6-

element series is needed for 3dB coupling, therefore the coupling for one series will be:

T

Ay=sin (£)=0.1305 (49)

That equals to 17.68 dB. The directivity for Chebyshev-based super imposed array is greater
than the single array. The reason can be explained by this fact that returned waves are add-
ed in phase and amplitude, so the maximum amplitude for returned wave will not exceed
from single array in any case and it will damped soon.

2.3. Transverse groups of holes

It maybe concluded that by using two or three rows of holes in broad wall, the stronger cou-
pling would be obtained. It is true if there are two rows and the distance of center of holes to
side walls being equal to x=0.25a but for three rows the result is not good. For two rows the
coupling and directivity are derived from (23) and (27). See Fig. 9

203
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Figure 9. Groups of two or three rows holes.

The test results of multi-hole couplers are as following;:

A 6dB coupler by 1" x1/2" waveguide in 8.2~12.4GHz band is designed by 21-elements su-
per imposed array based on 6-element Chebyshev in two rows (totally 42 holes). The dis-
tance from side-wall for circular-holes is x=0.25a=a/4 and distance between hole centers is
A [4. The obtained directivity “D” is more than 40dB and coupling deviation AC is about

+0.54B. [19]

Shelton has tested multi-rows couplers and has given the coupling curve in terms of holes
diameters for X and Ku bands waveguides. His efforts by using 3 rows were not successful.
[20] For 1" x1/2" waveguide, Cohn used rounded rectangular holes in two rows. His re-
search approved that 2-rows is better than 3-rows and for shortening the length it is not pos-
sible to use 3-rows holes.

It was also declared that in case of 3-rows, the resonance in upper band will happen. The
reason is, where the electric vector is in parallel to broad wall, the even mode is excited and
coupler acts as side wall coupler. Such case is not happened for 2-rows couplers. By reduc-
ing the height of “b” it is possible to put the resonance frequency of even modes out of oper-
ating frequency band. Only a slight reduction in “b” is needed since the resonance is
occurred when the coupling region has length of /\g /2 and it is near cut-off for even modes.
Indeed, as an example, the “b” should be reduced from 0.4” to 1/16”. This reduction in “b”
increases the coupling of each hole. See (17). So a few number of holes needed to make 3dB
coupling. As an example, a 2™ order Chebyshev transformer has a theoretical VSWR of 1.01
over its bandwidth. For better matching the waveguide height should be reduced at the two
ends. Each series of holes at each side of coupler should be located inside of transformer in
the way that it does not change the length. The final length would be 3.9 inches consisting of
2-rows of 10 holes that gives a coupling of 3 +0.5dB and Isolation of more than 30dB for X-
band 8.2~12.4GHz.
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3. Practical designing

3.1. A real sample

After reviewing the basics of directional coupler, we start to design a coupler practically. First

of all it is better to introduce the abbreviations that we use. They are listed in following table:

C  =CouplingindB

)\g1 = Guided wavelength at the lower end of the required bandwidth (mm)

Agz = Guided wavelength at the upper end of the required bandwidth (mm)

Ay, =Mean guided wavelength

N =number of coupling elements in basic array

Dpnin = minimum directivity (dB)

A
~180/ 1+ 2= (deg)

92

Ay =Guided wavelength (at the center frequency of the wave-guide bandwidth) (mm)
X =Axis across broad dimensional of waveguide

A =Broad dimension of a waveguide wall (mm)

B =Narrow dimension of waveguide wall (mm)

d = Diameter of hole in millimeter (mm)

A =1- (%)2 Term giving correction of resonance phenomena

Ay =free space wavelength (mm)

T  =wall thickness (mm)

:32(%)[1 - (%)]”2 term giving correction to the attenuation effect on a finite wall

thickness

Xo =1/cos

Table 3. The terms and abbreviations that used in design procedure.

As it is mentioned before in (10):

Agund _ 81782 (50)

81 82

The number of holes can be defined by minimum directivity D, ;, as: [23]
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n=1+cosh™ [ 0T } (51)
cosh’! (ﬁ]

The starting coefficient in Chebyshev argument is calculated as:
cos [T~ (52)

For X-band that we have A, =6.089 Cm and A, =2.489 Cmthe X;=1.853 is obtained. Next step

is to find the Chebyshev polynomial coefficients by computer program that gives:

{40.507, 172.277, 355.449, 445.373} (Notice that, only a half of the coefficients are enough due
to symmetric specification of Chebyshev polynomial).

Then the coefficients are normalized to least element that gives following table:

A B C D

1.0 4.253 8.775 10.995

Table 4. Normalizing the Chebyshev coefficients.

Therefore the whole structure of the holes will be as follows:

A B C D C B A

Table 5. Sequence of holes and its related Chebyshev coefficients for coupler synthesis.

Now we add them all together:
2(A+B+C)+D=39.051 (53)

The coupling for each hole will be defined in dB as follows:

Coupling for Holes A=20log 39'3 °l iB=31.832 dB

Coupling for Holes B=20log 32'2% dB=19.259 dB

Coupling for Holes C=20log e dB=13.968 dB

Coupling for Holes D=20log % dB=11.776 dB

Now, consider that we want to design a 10dB coupler, so we add a 10dB to each coefficient:
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C,=41.832 dB, Holes C3=29.259 dB, Holes C=23.968 dB, Holes C,=21.776 dB

Finally the achieved numbers should be inserted into Bethe’s formula for small size holes: [12]

C=20log { 2. (%)2]] +20log {32(+)1- (%)}” ) (54)

Now we solve the above equation (for each hole) by iteration method and the diameter of
each hole would be determined. By considering the distance of circle centers to side wall as
x=0.203a (7) following values for diameters would be obtained:

A=0.234 inch, B=0.343 inch, C=0.397 inch, D=0.421 inch

Note that the solved example is for single array. If we wanted to have the double rows we
should put the (C+6) dB instead of C dB (that we considered 10 dB in above example).

1

Notice: an approximation way to define the number of holes “n” is using the D, ;, in equal
to maximum coupling between holes plus 3 ~ 5 dB. For instance in the solved example, the
maximum coupling is belonged to “A” that was C ,=41.832 dB. So:

D, =C,+5=47 dB (55)

And the number of holes would be:

47

R 102
n=1+cosh1LOSh,1 Xo}z6.9 —-n=7 (56)

Therefore if we wanted to have a good directivity, a directivity higher than 47dB then we
should have 7 holes in the coupler.

In practice, for eliminating the effect of wall thickness “t”, it is possible to remove one broad
wall of a waveguide and mill- the next wall to have half thickness between to waveguides. [23]

The real designed 20 dB coupler by R70 waveguide and 14 holes in two rows (each row has
7 holes) is fabricated and tested. The results are given in Fig.10

In Fig. 11 and 12, another directional coupler for C = 10 dB is sketched. The diameter of cir-
cles for its five categories of holes, are:

Holes number 4 =4.16 mm
Holes number 3 =6.45 mm
Holes number 2 =8.00 mm
Holes number 1 =8.66 mm
Holes number 0 =8.94 mm

For further information see Fig. 11 and 12.
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Figure 10. The test result for a multi-hole waveguide R70, directional coupler C=20dB
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Figure 11. The R70 directional coupler, C=10 dB by two rows of 9-elements

Figure 12. The circle centers and distance to side walls are the same.
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Figure 13. Cross section for a 38-holes (double rows of 19-elements) directional coupler. The lossy load maching using
ferro-based materials (courtesy H. Mottaghi: hossain_mtg@yahoo.com)

The port-4 in the couplers is matched by a conical or pyramidal load. To obtain the lowest
reflection from this port, the tapered structure is used to make a slight change in characteris-
tic impedance of the waveguide along its length. Since the power loss at this port, naturally
is not significant, the medium or low power absorber or load is enough.
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